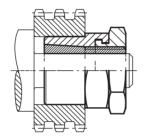
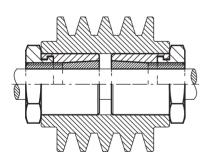

파워록 EH 25050.

파워록 설치 예


육각 너트와 잠금너트가 있는 파의 록

프리 센터링(PRE-CENTERING)

허브(Hub)가 긴 경우에는 도면에서와 같이 추가적으로 축을 지지 할 수 있습니다.


- 지지되는 동안 파워록의 길이의 이점이 있기에 힘을 유지 하는데 도움이 됩니다.
- 증가된 회전 정도를 얻게 됩니다.

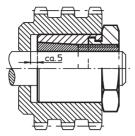
축 이동이 없는 경우

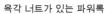
허브(Hub) 시트와 칼라가 맞대어져서 파워록이 작동할 경우, 축 오프셋(Axial offset)이 불가능합니다. 이러한 경우, 클램핑 력의 60%만 전달되어 집니다.

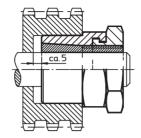
한 개의 허브(HUB)에 두 개의 파워록이 있을 경우

첫 번째 파워록은 100%의 힘을 전달할 수 있습니다. 그러나다른 한 쪽의 파워록은 축 오프셋(Axial offset)이 불가능하기에 60%의 힘만 전달할 수 있게 됩니다.

파워록 EH 25050.







파워록 조립 설명

육각 너트와 잠금너트가 있는

파워록을 사용할 경우에 스프로켓 휠(Sprocket wheel), 기어 휠, 벨트 폴리(Belt pulley), 캠, 레버 등과 같은 제품들을 손쉽고 효과적으로 사용할 수 있습니다. 잠금 너트가 있는 타입과 없는 타입으로 나누어집니다.

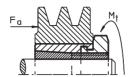
조립

- 1. 허브(Hub) 및 샤프트(Shaft)의 접촉 표면은 먼지나 오일이 묻지 않도록 주의하셔야합니다.
- 2. 안쪽 부분이 바깥 쪽 부분에 약 3.5 mm 돌출 될 때까지 왼쪽으로 너트를 돌립니다.
- 3. 테이퍼 샤프트 허브를 허브 홀에 설치한다.
- 4. 설치할 위치에서 너트를 약하게 조이고 망치와 같은 도구를 사용하여 축 방향을 조절하십시오. 그 후 파워록을 꽉 조이면 됩니다.

분해

안쪽 부분이 바깥 쪽 부분에 약 3.5 mm 돌출 될 때까지 왼쪽으로 너트를 돌려 파워록을 축과 분리시킵니다.

관통되지 않은 홀에 설치되는 동안 테이퍼 샤프트 허브를 홀에 서 제거해야 한다.

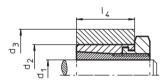


EH 25050.

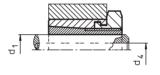
기술 자료

동시에 발생하는 다른 힘

만약 토크(M,)와 축방향 힘(Fa)이 동시에 전달되면 결과적 으로 토탈 토크(M,)가 얻어집다. 이 토크가 최대 토크 (M_{max})보다 작거나 같아야 하면(M_r ≤ M_{max})로 표기합니다.


$$M_r = \sqrt{M_t^2 + \left(F_a \times \frac{d_1}{2 \times 1000}\right)^2} \times v [Nm]$$

예 파워록 25050.0125 $M_t = 150 \text{ Nm}$ $F_a = 5 \text{ kN}$ $d_1 = 25 \text{ mm}$ v = 2


$$M_r = \sqrt{150^2 \text{ Nm}^2 + \left(5000 \text{ N} \times \frac{25 \text{ mm}}{2 \times 1000 \text{ mm/m}}\right)^2} \times 2 = 325 \text{ Nm}$$

397Nm의 최대 토크(M_{max})는 파워록 EH25050.0125에 의해 전달됩니다. 힘은 M,(325Nm)이 M,,,보다 적기 때문에 전달 될 수 있습니다

허브(HUB) 외부 및 홀 샤프트 내부 직경

파워록과 허브(HUB)의 외경 그리고 관통형 축의 내경이 연결될 때 아래와 같이 계산 합니다

허브(HUB) 외경의 최소값

$d_3 \ge d_2 \times \sqrt{\frac{R_e + P_N \times C_N}{R_e - P_N \times C_N}}$ [mm]

d₁ = 축경 d = 허브(Hub) 구멍(홀) d₃ = 허브(Hub) 외경

d₄ = 관통형 축 내경 R_e = 외견상의 항복점

R₀0,2 , R₀0,1 = 영구적 인장률 제한점

관통형 축의 내경 최대값

$$d_4 \le d_1 \times \sqrt{\frac{R_e + 2p_w}{R_e (R_e)}} \text{ [mm]}$$

p_N = 허브(Hub) 표면 압력 p_w = 축 표면 압력

C_N = 계수[는T,만약허브(Hub)길이 >파워록 접촉 길이(L_N≥ L₂)인 경우]

$$d_3 \ge 42 \text{ mm x} \sqrt{\frac{165 \text{ N/mm}^2 + 103 \text{ N/mm}^2 \text{ x 1}}{165 \text{ N/mm}^2 - 103 \text{ N/mm}^2 \text{ x 1}}} \ge 87,4 \text{ mm}$$

예

파워록 EH 25050.0025 인 경우 , 재질 G25; $R_p 0,1 = 165 \text{ N/mm}^2$

380 N/mm² - 2 x 174 N/mm² x 1 380 N/mm²

파워록 EH 25050.0025, 재질 Ck45; $R_e = 380 \text{ N/mm}^2$

재질도표

Merry Committee											
				재질							
	St 37-2 Ust 37-2	St 50-2	Ck 35	Ck 45	11 SMn 30 11 SMn Pb 30	GG 15	GG 20	GG 25	GGG-40	AIMg 3 F 25	1.4301 1.4305
직경				강성값 N/mm²							
	R _e	R _e	R _e	R _e	R _e	R _e	R _p 0,1	R _p 0,1	R _p 0,1	R _p 0,2	R _p 0,2
16 < d₁ ≤ 40	225	285	320	380	375	90	130	165	250	180	190
40 < d₁ ≤100	205	265	260	300	245	90	130	165	250	180	190

